

Current Trends & Future Directions in Bedside to Bench Translational Research in ER+ Breast Cancer

Carlos L. Arteaga, MD Professor of Medicine Director, UTSW Harold C. Simmons Comprehensive Cancer Center Lisa K. Simmons Distinguished Chair in Comprehensive Oncology Associate Dean of Oncology Programs

> UT Southwestern Harold C. Simmons Comprehensive Cancer Center

Disclosures

- Grant support
 - Pfizer, Lilly, Radius, PUMA Biotechnology, Bayer, Takeda
- Advisory role
 - Abbvie, Novartis, Lilly, Sanofi, Radius, TAIHO Oncology, PUMA Biotechnology, Merck, H3Biomedicine, Symphogen, OrigiMed
- Stock options
 - Provista, Y-TRAP
- Scientific Advisory Board
 - Susan G. Komen for the Cure Breast Cancer Foundation

Approaches to Discover Mechanisms of Endocrine Resistance in ER+ Breast Cancer

- Short presurgical (aka, 'window') and neoadjuvant therapeutic trials
- Biopsy and molecular profiling of recurrent (drugresistant) metastases
- Interrogation of exceptional responders to targeted therapies

Endocrine Resistance: Mechanisms and Targeted Therapies

Mechanisms	Targeted Therapies
HER2 amplification	Trastuzumab, lapatinib, T-DM1
ESR1 mutations, fusions	Fulvestrant (?), novel ER degraders, CDK4/6 inhibitors
Ligand-independent ER	CDK4/6 inhibitors, fulvestrant
PIK3CA mutations	> TORC1, pan-PI3K, and PI3K α inhibitors
FGFR pathway alterations	FGFR inhibitors
HER2 mutations	> Neratinib
NF1 mutations/deletions	MAPK pathway inhibitors

Approaches to Discover Mechanisms of Endocrine Resistance in ER+ Breast Cancer

- Short presurgical (aka, 'window') and neoadjuvant therapeutic trials
- Biopsy and molecular profiling of recurrent (drugresistant) metastases
- Interrogation of exceptional responders to targeted therapies

Profiling ER+ breast cancer to discover mechanisms of resistance

Baseline biopsy

2 wks post-letrozole

Glitnane et al Science Trans Med 2017

Profiling ER+ breast cancer to discover mechanisms of resistance

Resistant Intermediate Sensitive Unknown

Glitnane et al Science Trans Med 2017

Most frequent recurrent somatic alterations associated with resistance to estrogen deprivation (letrozole)

ER+/FGFR1-amplified PDXs do not shrink with fulvestrant alone but are potently inhibited by fulvestrant <u>and</u> FGFR TKI lucitanib

TM00368

Formisano et al. Clin. Cancer Res. 2017

CDK4/6 inhibitors are first-line therapy in advanced ER+ breast cancer

PALOMA2

MONALEESA2

MONARCH3

Finn et al NEJM 2016

Hortobagyi et al NEJM 2016

De Leo et al JCO 2017

Dual blockade of the ER pathway with ER and CDK4/6 inhibitors

CCNE1 mRNA overexpression in presurgical studies correlates with resistance to CDK4/6 inhibitors

POP Trial 2 weeks Palbociclib NeoPalAna Anastrozole → Palbociclib

Arnedos et al Ann Oncol 2018, Turner et al JCO 2019

Ma C et al CCR 2017

Implications

- Neoadjuvant and short term presurgical trials can be used as a platform to discover mechanisms of antiestrogen resistance
- And also to identify patients that can be considered for treatment with adjuvant targeted therapies (i.e., CDK4/6 inhibitors)

Approaches to Discover Mechanisms of Endocrine Resistance in ER+ Breast Cancer

- Short presurgical (aka, 'window') and neoadjuvant therapeutic trials
- Biopsy and molecular profiling of recurrent (drugresistant) metastases – including plasma ctDNA
- Interrogation of exceptional responders to targeted therapies

ER+ breast cancer evolution under endocrine therapy (Razavi et al. Cancer Cell 2018)

- WES in 30 treatment-naïve primary tumors, post-progression (hormonal therapy) specimen, and matched normal control
- Acquired mutations not found in primary tumors, including with higher depth sequencing using MSK-IMPACT (sensitivity to 1.3% of cancer cells)
- Additional targeted sequencing on matched pre- and post progression tumors from 44 additional patients
- Acquired mutations often subclonal

Cancer Cell

Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway

Li Z, Chandarlapaty S. Cancer Cell 2018

Loss of FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via Hippo pathway-dependent CDK6 overexpression

FGFR pathway alterations in ctDNA are associated with progression on CDK4/6 inhibitors

Endocrine Resistance: Mechanisms and Targeted Therapies

Mechanisms	Targeted Therapies
HER2 amplification	Trastuzumab, lapatinib, T-DM1
ESR1 mutations, fusions	Fulvestrant (?), novel ER degraders, CDK4/6 inhibitors
Ligand-independent ER	CDK4/6 inhibitors, fulvestrant
PIK3CA mutations	> TORC1, pan-PI3K, and PI3K α inhibitors
FGFR pathway alterations	FGFR inhibitors
HER2 mutations	Neratinib
NF1 mutations/deletions	MAPK pathway inhibitors

Approaches to Discover Mechanisms of Endocrine Resistance in ER+ Breast Cancer

- Short presurgical (aka, 'window') and neoadjuvant therapeutic trials
- Biopsy and molecular profiling of recurrent (drugresistant) metastases
- Interrogation of exceptional responders to targeted therapies

Extraordinary response of patient with breast cancer to HER2 (ERBB2) tyrosine kinase inhibitor neratinib

ERBB2 mutant (L755_E757delinsS) ER+/HER2- breast carcinoma

Baseline

8 weeks

16 weeks

Confirmed PR: 70% reduction by RECIST following neratinib monotherapy

HER2 (ERBB2) mutations occur in 2-4% of breast cancers

HER2-T798I gatekeeper mutation mediates acquired resistance to neratinib

HER2 L869R lobular breast cancer

Baseline

Post-Treatment (20 days)

Hanker et al. Cancer Discovery 2017

HER2 L869R/T798I

Efficacy in HER2-mutant tumors by cancer type

Hyman et al. Nature 2017

HER2 mutations confer resistance to estrogen deprivation and to fulvestrant

Estrogen rescues ER+/HER2 mutant cells: Combined blockade of HER2 and ER is required

Croessmann et al. Clin. Cancer Res. 2018

Figure 1 SUMMIT study design (Amendment 4)

Neratinib: oral 240 mg daily

Fulvestrant: intramuscular 500 mg on day 1, 15 and 29; once every 28 days thereafter (labeled dose) Paclitaxel: intravenous 80 mg/m² on day 1, 8 and 15; every 28 days Loperamide prophylaxis: oral 12 mg days 1–14, 8 mg days 15–18; as needed thereafter

Primary endpoint

 Objective response rate at first (8wks) post-baseline tumor assessment (ORR₈)

Secondary endpoints

- ORR (confirmed)
- Duration of response (DoR)
- Clinical benefit rate (CBR)
- Progression-free survival (PFS)
- Safety
- Biomarkers

Simon 2-stage design

- If ≥1 response in first evaluable 7 patients, expand cohort to Stage 2 (N=18)
- If ≥4 responses in Stage 2, expand or breakout

Tumor assessments

- RECIST v1.1 (primary criteria)
- PET response criteria (RECIST nonevaluable)

Statistical methods

- ORR₈, ORR, CBR: associated 95% CI
- Median PFS: KM estimate with 95% CI

Figure 3 Waterfall plot – best % change in tumor size

Not shown: 5 patients in whom no % change in tumor size could be calculated (n=1 died before first post-baseline assessment; n=1 ended treatment due to AEs before first post-baseline assessment; n=3 non-target lesions only)

HER2 kinase domain mutations exhibit enhanced dimerization with HER3 (ERBB3)

Croessmann et al. Clin. Cancer Res. 2018

HER2 kinase domain mutations rely on PI3K/AKT/mTOR signaling

Endocrine Resistance: Mechanisms and Targeted Therapies

Mechanisms	Targeted Therapies
HER2 amplification	Trastuzumab, lapatinib, T-DM1
ESR1 mutations, fusions	Fulvestrant (?), novel ER degraders, CDK4/6 inhibitors
Ligand-independent ER	CDK4/6 inhibitors, fulvestrant
PIK3CA mutations	> TORC1, Pan-PI3K, and PI3K α inhibitors
FGFR pathway alterations	FGFR inhibitors
HER2 mutations	Neratinib
NF1 mutations/deletions	MAPK pathway inhibitors

PIK3CA (p110 α) mutations are gain-of-function oncogenes

MCF10A cells

Chakrabarty et al. Oncogene 2010

Gain of interaction of $p110\alpha$ helical domain mutants with IRS-1 is required for its oncogenicity

Hao et al. Cancer Cell 23:583-93, 2013

Combination of $PI3K\alpha$ inhibitor alpelisib and letrozole is active against breast cancers with mutant PIK3CA

PIK3CA D447-L455_del

Mayer et al. Clin Cancer Res 23:26-34, 2017

Duration on therapy: Letrozole + BYL719 (alpelisib)

Mayer et al. Clin Cancer Res 23:26-34, 2017

PIK3CA

Months on Treatment

SOLAR-1: A Phase 3 Randomized, Double-Blind, Placebo-Controlled Trial (NCT02437318)¹

Primary endpoint

 PFS in *PIK3CA*-mutant cohort (locally assessed)

Secondary endpoints include

- OS (PIK3CA-mutant cohort)
- PFS (PIK3CA-non-mutant cohort)
- PFS (PIK3CA mutation in ctDNA)
- PFS (PIK3CA-non-mutant in ctDNA)
- ORR/CBR (both cohorts)
- Safety
- The primary endpoint included all randomized patients in the PIK3CA-mutant cohort; PFS was analyzed in the PIK3CA-non-mutant cohort as a proof of concept
- Safety was analyzed for all patients who received ≥ 1 dose of study treatment, in both cohorts

ABC, advanced breast cancer; AI, aromatase inhibitor; ALP, alpelisib; CBR, clinical benefit rate; ctDNA, circulating tumor DNA; ECOG, Eastern Cooperative Oncology Group; FUL, fulvestrant; HER2-, human epidermal growth factor receptor-2-negative; IM, intramuscular; ORR, overall response rate; OS, overall survival; PBO, placebo; PFS, progression-free survival;

PO, oral; QD, once daily; R, randomization.

^a More than 90% of patients had mutational status identified from archival tissue.

^b Fulvestrant given on Day 1 and Day 15 of the first 28-day cycle, then Day 1 of subsequent 28-day cycles.

1. Andre F, et al. ESMO 2018. Abstract LBA3 [oral].

This presentation is the intellectual property of Dejan Juric. Contact Juric. Dejan@mgh.harvard.edu for permission to reprint and/or distribute.

Primary Endpoint: Locally Assessed PFS in the *PIK3CA*-mutant Cohort^{1,a}

Data cut-off: Jun 12, 2018	ALP + FUL (n = 169)	PBO + FUL (n = 172)					
Number of PFS events, n (%)	103 (60.9)	129 (75.0)					
Progression	99 (58.6)	120 (69.8)					
Death	4 (2.4)	9 (5.2)					
Censored	66 (39.1)	43 (25.0)					
Median PFS (95% CI)	11.0 (7.5-14.5)	5.7 (3.7-7.4)					
HR (95% CI)	0.65 (0.50-0.85)						
One-sided <i>P</i> value	0.00065						

Number of subjects still at risk

Alpelisib ·	+ Fulv 16	69 158	145	141	123	113	97	95	85	82	75	71	62	54	50	43	39	32	30	27	17	16	14	5	5	4	3	3	1	1	1	0
Placebo +	Fulv 17	72 167	120	111	89	88	80	77	67	66	58	54	48	41	37	29	29	21	20	19	14	13	9	3	3	2	2	2	0	0	0	0

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival.

At final PFS analysis, superiority was declared if one-sided, stratified log-rank test P value was ≤ 0.0199 (Haybittle–Peto boundary).

^a Mutation status determined from tissue biopsy.

1. Andre F, et al. ESMO 2018. Abstract LBA3 [oral].

This presentation is the intellectual property of Dejan Juric. Contact Juric.Dejan@mgh.harvard.edu for permission to reprint and/or distribute.

Best Percentage Change in Sum of Target Lesion Diameters Based on Local Investigator Assessment in *PIK3CA*-mutant Cohort^{a,b}

PD, progressive disease; UNK, unknown.

Patients for whom the best % change in target lesions was not available and patients for whom the best % change in target lesions was contradicted by overall lesion response = UNK were excluded from the analysis, percentages above use n as denominator. Only patients with measurable disease at baseline are presented.

^a Mutation status determined from tissue biopsy. ^b Change from baseline in sum of target lesion diameters.

This presentation is the intellectual property of Dejan Juric. Contact Juric. Dejan@mgh.harvard.edu for permission to reprint and/or distribute.

Locally Assessed PFS by Tissue or Plasma ctDNA-determined Mutation Status

	ALP + F	UL	PBO + FL		
	Event n/N (%)	Median PFS	Event n/N (%)	Median PFS	HR
Patients with <i>PIK3CA</i> mutation: tissue	103/169 (60.9)	11.0	129/172 (75.0)	5.7	0.65
Patients with <i>PIK3CA</i> mutation: plasma	57/92 (62.0)	10.9	75/94 (79.8)	3.7	0.55
Patients <u>without</u> PIK3CA mutation: tissue	49/115 (42.6)	7.4	57/116 (49.1)	5.6	0.85
Patients <u>without</u> <i>PIK3CA</i> mutation: plasma	92/181 (50.8)	8.8	103/182 (56.6)	7.3	0.80

ctDNA, circulating tumor DNA; HR, hazard ratio; PFS, progression-free survival; QD, once daily. This presentation is the intellectual property of Dejan Juric. Contact <u>Juric.Dejan@mgh.harvard.edu</u> for permission to reprint and/or distribute.

Adverse events in the total population

	A	pelisib + fulvestra N=284	nt	Placebo + fulvestrant N=287								
AEs ≥20% in either arm, %	All	Grade 3	Grade 4	All	Grade 3	Grade 4						
Any adverse event	282 (99.3)	183 (64.4)	33 (11.6)	264 (92.0)	87 (30.3)	15 (5.2)						
Hyperglycemia	181 (63.7)	93 (32.7)	11 (3.9)	28 (9.8)	1 (0.3)	1 (0.3)						
Diarrhea	164 (57.7)	19 (6.7)	0	45 (15.7)	1 (0.3)	0						
Nausea	127 (44.7)	7 (2.5)	0	64 (22.3)	1 (0.3)	0						
Decreased appetite	101 (35.6)	2 (0.7)	0	30 (10.5)	1 (0.3)	0						
Rash*	101 (35.6)	28 (9.9)	0	17 (5.9)	1 (0.3)	0						
Vomiting	77 (27.1)	2 (0.7)	0	28 (9.8)	1 (0.3)	0						
Decreased weight	76 (26.8)	11 (3.9)	0	6 (2.1)	0	0						
Stomatitis	70 (24.6)	7 (2.5)	0	18 (6.3)	0	0						
Fatigue	69 (24.3)	10 (3.5)	0	49 (17.1)	3 (1.0)	0						
Asthenia	58 (20.4)	5 (1.8)	0	37 (12.9)	0	0						

• Eighteen patients (6.3%) discontinued alpelisib due to hyperglycemia and 9 patients (3.2%) due to rash; no patients discontinued placebo due to either hyperglycemia or rash

• Maculopapular rash was observed in 14.1% of patients (all-grade) and 8.8% (grade 3) in the alpelisib arm, vs 1.7% and 0.3%, respectively, in the placebo arm

• The safety profile of the alpelisib group and the placebo group was similar in *PIK3CA*-mutant and *PIK3CA*-non-mutant cohorts

*Single preferred term of "rash" does not include preferred term of "maculopapular rash".

Inhibition of PI3Kα blocks glucose uptake and increases insulin levels (Juric et al. JCO 2018)

Reduction in FDG uptake by PET correlates with clinical benefit from pan- PI3K inhibitor buparlisib

Mayer et al. JCO 2014

Insulin is highly elevated in the serum following treatment with PI3K inhibitors and remains high for hours

Hopkins B, Cantley L. Nature 2018

Peak in serum glucose and serum insulin can be reduced by both a sodium-glucose transporter (SGLT) inhibitor and by a ketogenic diet. Metformin is not as effective.

SGLTi $\rightarrow \downarrow$ glucose reabsorption in the kidney Ketogenic diet \rightarrow depletes glycogen, \downarrow gluconeogenesis

90 min post-dosing a PIK3CA mutant/PTEN-null endometrial tumor with BKM120, P-InsR increases and this increase is prevented when mice are on a ketogenic diet

Implication: This insulin rebound partially maintains PI3K activity in Ins/IGF1R+ tumors and prevents complete inhibition of FDG uptake, thus limiting the effect of therapeutic inhibitors

A ketogenic diet markedly improves response to PI3K inhibitors in orthotopic allografts of murine KRASmutant/TP53 deleted pancreatic cancer

Reasons why therapeutic inhibition of PI3K in cancer has not had a better outcome

- Mutant PIK3CA is a weak oncogene
- Lack of optimal patient selection
- 'Dialing up' inhibition of PI3K causes severe rash and hyperglycemia, thus inhibition of PI3K is suboptimal and transient
- Use of pan-PI3K (± mTOR) inhibitors with poor tolerance
- Therapeutic inhibition of PI3K is followed by compensatory upregulation of several RTKs (ERBB receptors, Ins/IGF-IR, FGFRs), ERα, BCL2
- Lack of emphasis on combination trials
- Insulin production is increased upon inhibition of PI3K
- Lack of mutant specific inhibitors

Hanker et al. Cancer Discovery 2019

Approaches to Discover Mechanisms of Endocrine Resistance in ER+ Breast Cancer

- Short presurgical (aka, 'window') and neoadjuvant therapeutic trials
- Biopsy and molecular profiling of recurrent (drugresistant) metastases
- Interrogation of exceptional responders to targeted therapies → trials with targeted therapies, all informed by metastatic tumor profiling
- Big increase in combinations of targeted therapies with standard of care anti-ER therapy all informed by serially assessed tumor evolution

Acknowledgements

Vanderbilt

Ingrid Mayer, MD Justin Balko, PharmD, PhD Melinda Sanders, MD Paula Gonzalez-Ericsson, MD

UTSW Simmons Cancer Center

Alberto Servetto, MD, PhD Lisa Kinch, PhD Nisha Unni, MD Saurabh Mendiratta, MS Sumanta Chatterjee, PhD Weil Cornell Lewis Cantley, PhD

Puma Biotechnology

Al Lalani, PhD Richard Cutler, PhD Richard Bryce, MD <u>Guardant Health</u> Becky Nagy, PhD Richard Lanman, MD

Novartis

Samit Hirawat, MD Tetiana Taran, PhD

Convergent PTEN-null phenotype developed by parallel evolution under selective pressure with BYL719

Juric, Castel, Nature, 2014